
Software is everywhere, from cell
phones to large military systems.

According to the National Academy of
Science [1], “... software is not merely an
essential market commodity but, in fact,
embodies the economy’s production func-
tion itself.” The National Institute of
Standards and Technology (NIST) esti-
mates that software errors cost the U.S.
economy $59.5 billion a year and software
sales accounted for $180 billion [2].
Software engineering education does not
get the attention it deserves, even though
it is crucially important to our economy.
The issues related to software engineering
as a discipline and the debates which have
occurred over the years, are not new and
are described in [3, 4, 5].

The list of software disasters grows
each year. Some of the best-known
include the following: the Ariane 5 rocket
(Flight 501) [6, 7], the Federal Bureau of
Investigation Virtual Case File system [8],
the Federal Aviation Administration
Advanced Automation System [7, 9], the
California Department of Motor Vehicle
system, the American Airlines reservation
system, and many, many more [7, 10]. The
F-22 aircraft also had problems initially
due to its complex software systems.
Software disasters cost the United States
billions of dollars every year, and this may
only get worse since future systems will be
more complex. Boeing spent roughly $800
million on software for the 777, and they
might need to spend five times that on the
787 [11]. Aerospace systems will also
include some levels of autonomy, accom-
panied by an entirely new level of soft-
ware complexity. To help prevent future
disasters, we must have more software
engineers trained in rigorous technical
programs that are on par with other engi-
neering programs. The United States

should not wait until there is a disaster
that causes large numbers of human casu-
alties before it acts. We do not currently
have enough software engineers. We need
to educate many more in the near future,
especially considering the large group of
engineers that will be retiring in the next
10 years [12]. In 2005, the average age of
an aerospace engineer was 54 [13]. In
addition, more than 26 percent of the
aerospace workers will be eligible for
retirement in 2008 [14].

Importance of Software in
Aerospace Systems
The aerospace industry provides roughly
$900 billion in economic activity and
accounts for more than 15 percent of the
gross domestic product and supports
more than 15 million high quality jobs in
the United States [14]. These aerospace
systems rely heavily on software, which
has been called the Achilles Heel of aero-
space systems. There are numerous anec-
dotes and examples that illustrate the
importance of computing and software in
aerospace. For example:
• The Boeing 777 has 1,280 onboard

processors that use more than four
million lines of software; Ada accounts
for 99.5 percent of this [15, 16].

• The F-22 has more than two million
lines of software onboard; between 80
and 85 percent is in Ada [17].

• Some Blackhawk helicopters have
almost 2,000 pounds of wire connect-
ing all the computers and sensors.

• The wiring harness is often more com-
plex and more difficult to design than
the aircraft structure.

• Some aircraft cannot fly without their
onboard computers (e.g., F-16 and F-
117).

• The air traffic control system relies

heavily on computers, software, and
communications.

• Interplanetary robotics and spacecraft
perform amazing feats, often in
extreme environments.

• Autonomous, intelligent, unmanned
vehicles will be even less deterministic
than current systems.

• Computers are also important in the
design and analysis of aerospace sys-
tems. Often this means using high-per-
formance, massively parallel computer
systems.

• Communication systems are critically
important for aircraft and spacecraft;
this now includes computer network-
ing onboard, to the ground, and to
other aerospace vehicles.

• Modern aircraft and spacecraft seldom
work alone – they are usually part of a
system of systems.
One way to measure the need for soft-

ware engineers in the aerospace field is to
research existing job opportunities. An
Oct. 2006 review of the Lockheed-Martin
Corporation Web site showed they had
536 job openings for recent graduates,
including 68 openings (13 percent) in soft-
ware engineering and four in aerospace
engineering. Most of the aerospace engi-
neering job openings were for structural
engineers capable of performing finite
element analyses. It should be noted that
they do hire aerospace engineers in other
areas as well (for example, aerospace con-
trol experts are sometimes listed under
embedded systems). The Boeing employ-
ment Web page gave similar results. They
had 298 job openings related to software.
There were only three jobs that mentioned
aerodynamics (none of which were actually
jobs for aerodynamicists). When searching
the Boeing site for aerospace engineer, it
returned a listing of six open positions in

The Critical Need for Software Engineering Education

Dr. Lyle N. Long 
The Pennsylvania State University

Software affects almost every aspect of our daily lives (manufacturing, banking, travel, communications, defense, medicine,
research, government, education, entertainment, law, etc.). It is an essential part of our military systems, and it is used
throughout the civilian sector, including safety-critical and mission-critical systems. In addition, the complexity of many of
these systems has been growing exponentially. Unfortunately, the U.S. higher education system has not kept pace with these
needs. Existing undergraduate and graduate science and engineering programs need to incorporate more material on software
engineering. This is especially true for aerospace engineering, since those systems rely heavily on computation, information, com-
munications, and software. In addition, the United States needs more dedicated software engineering educational programs
and professional software engineering certification programs.

Training and Education

6 CROSSTALK The Journal of Defense Software Engineering January 2008

 



The Critical Need for Software Engineering Education

structural engineering. This is probably an
indication that aerospace engineering edu-
cational programs are concentrating too
much on the applied physics of aerospace
engineering and not enough on comput-
ing and software. We need to work with
industry and the government to redefine
aerospace engineering. We need to educate
students capable of designing and build-
ing the new aerospace systems that we will
need in the future – which will be domi-
nated by computing, networking, and
information systems.

Software Engineering Defined
The Institute of Electrical and Electronics
Engineers (IEEE) defines software engi-
neering [3] as “the application of a sys-
tematic, disciplined, quantifiable approach
to the development, operation, and main-
tenance of software.” A good summary of
software engineering can be found in [18].

Software systems are some of the
most complicated things humans have
ever created. To design and build them,
one needs to follow processes and proce-
dures typical of other engineering disci-
plines [6, 19]. First, the requirements need
to be carefully defined. Then the architec-
ture of the software system needs to be
developed. Once the requirements and
architecture are defined, one can begin
code development. The code then needs
verification, validation, and testing. There
are many ways of accomplishing all of
these steps which are related to the type of
life-cycle model used and the type of sys-
tem developed. In addition, one needs to
consider how to estimate costs, how to
manage the people, and how to monitor
the ethical responsibilities of the team.
This is not unlike the steps required to
design and build any complex system (e.g.,
bridges, aircraft, and computer hardware).
The actual code development or program-
ming can be a fairly small portion of the
process [6].

Most engineers and scientists do not
fully appreciate or understand software
engineering. Even high school students
think they can do software after they learn
the basics of Java or C++ syntax. All too
often, software engineering is equated
with programming. This is like equating
civil engineering with pouring concrete.
Many people can pour concrete, but few
are civil engineers and can build large,
technically inspired masterpieces. Like-
wise, many people can program, but few
can develop large software masterpieces.
It is not uncommon to hear people argu-
ing about the merits or drawbacks of the
different computer languages, even
though they are not well versed on the var-

ious languages. Often, they simply like the
language that they grew up with and do
not appreciate or understand the others.
These misconceptions are especially
apparent in discussions regarding Ada
[20], which is still probably the best lan-
guage to use for mission- or safety-critical
systems. In reality, people who develop
code without sound software engineering
approaches are merely hackers. Of course,
programmers are an essential part of soft-
ware engineering, and talented program-
mers are quite rare and extremely valuable.

Software Engineering
Education
Both the U.S. economy and national
defense depend upon software, but many
of these large software systems are being
developed by people who have never been
formally trained in software engineering.
While there are some incredibly talented
self-taught software engineers, we should

not rely on the majority of our software
engineers being self-taught. We would
never build modern aircraft without aero-
space engineers, and we would never build
bridges or buildings without civil engi-
neers. So why are we developing large
software systems without teams of for-
mally trained and professionally certified
software engineers? 

Recently, Dr. John Knight, a professor
at the University of Virginia, contrasted
software engineering to other engineering
disciplines [21]. He spoke of how 1,000-
year-old cathedrals were built using the
best civil engineering technology of the
time and how these buildings are still
standing. Civil engineering has evolved
tremendously over the ages, and now we
have enormous skyscrapers and spectacu-

lar bridges. This would not be possible
without a vibrant civil engineering educa-
tional system, research programs, and
mentoring. Similar analogies could be
drawn from other engineering disciplines.
A thousand years from now, people will be
marveling at aerospace engineering mile-
stones such as the Wright Flyer, the SR-71
Blackbird, and the Apollo program. All
were great engineering projects in their
day and are now in museums. Will there be
any software cathedrals to marvel at 1,000
years from now? Or will future genera-
tions view us as hackers?

Traditional Science and Engineering
Educational Programs
Many students who graduate from U.S.
science and engineering programs will
eventually work in software development.
Unfortunately, most of them will get little
or no software education. For example, 24
percent of physics graduates will be work-
ing on software five to eight years after
graduation [22]. Most of them will proba-
bly receive no training in software engi-
neering in college. Other science gradu-
ates, even outside of engineering, may
also eventually work in software develop-
ment. It would be very beneficial for these
students to know more about software
engineering before they graduate. They
need more than a freshman-level course
in programming. This is true of almost all
the traditional science and engineering
degree programs.

It is also not valid to assume that com-
puter science graduates are software engi-
neers, either. It is fairly easy to graduate
from a computer science program with
very little education in software develop-
ment. Knight and Leveson describe the
need for more software education in com-
puter science and computer engineering
programs and advocate for more software
engineering programs [23].

The need for software education is
especially critical in aerospace engineering
programs. Aerospace engineers have
always prided themselves on being the
system integrators, but to do this you
must have some understanding of the
complete aerospace system you are devel-
oping. In modern combat aircraft, the
electronic components account for
roughly 10 percent of the weight and 33
percent of the cost [24]. So if aerospace
engineers are not well versed in comput-
ing, networking, sensors, and software
then they cannot understand the complete
system (unless that system is 60 years old).
Students need to be trained so that they
can develop the next generation of aero-
space systems, not old aircraft and old

January 2008 www.stsc.hill.af.mil 7

“We need to work with
industry and the

government to redefine
aerospace engineering.
We need to educate 
students capable of

designing and building
the new aerospace
systems that we will

need in the future ...”



Training and Education

spacecraft. Aerospace systems have
always used the latest technology to
achieve amazing performance. Future
and current systems rely heavily on com-
puters and software and students need to
know that. Aerospace engineers are
needed as system integrators, but this is
only possible if they have some under-
standing of the complete system (includ-
ing computing and software).

Today this goes beyond the onboard
avionics since modern aircraft and
spacecraft are almost always tied to other
systems, but avionics is a huge part of
aerospace systems. Processing power
and computer memory have been
increasing exponentially in military air-
craft since about 1960 [25]. The F-106
had less than 20 kilobytes of memory,
while the Joint Strike Fighter (JSF) could
have more than two gigabytes. Avionics
could account for 40 percent of the cost
of the JSF. The report also states that
software content in these systems has
increased dramatically, and that we need
more software engineers.

Computing and software are integral
parts of aerospace engineering. It is now
one of the key disciplines in aerospace
engineering. Traditionally, aerospace
engineering [26] was built upon four
technology pillars: aerodynamics, struc-
tures, propulsion, and dynamics and
control, as shown in Figure 1. These pil-
lars are reflected in aerospace engineer-
ing curricula. All these disciplines were
important for the Wright brothers and
for every aerospace system since then.
However, modern aerospace engineering
must include five pillars, as shown in
Figure 2. In [27], the authors refer to the
five areas as the following: aerodynam-
ics, materials, avionics, propulsion, and
controls. Current and future aerospace
systems are and will be designed using
computers. They will have onboard
computers and will need to communi-
cate with other vehicles and computers.

Computing (including processing, net-
working, and storing data) and software
are essential elements of aerospace engi-
neering, and they are the fifth pillar. In
addition, this fifth pillar might be the
most important pillar, and it is far less
mature than the other four. Aerospace
engineering educational programs have a
strong emphasis on applied physics (e.g.,
fluid dynamics, structural dynamics,
dynamics, combustion, and propulsion).
Historically, there were good reasons for
this, but we cannot continue to neglect
the research and educational needs in
aerospace computing and software.

While computing and software is
crucial for aerospace systems, existing
aerospace engineering educational pro-
grams usually do not reflect this fact.
Most aerospace engineering programs
require roughly 40 courses over a four-
year period, but students often take only
one course related to software (a fresh-
man-level programming course). Also,
there is usually no requirement to learn
about avionics, embedded systems, net-
working, sensors, or computer hardware.
This trend carries through to aerospace
engineering graduate programs as well,
where the entrance exams and curricula
seldom include computing, software, or
avionics. They are often primarily

applied physics programs.
Pennsylvania State University has

been working to modernize its aerospace
engineering curricula [28]. The universi-
ty now offers senior-level courses in
advanced computer programming
(object-oriented programming, Java,
C++, Ada, etc.) and software engineer-
ing (using [6]), both for aerospace engi-
neers. Penn State also has a new course
on the Global Positioning System. As of
2006, aerospace engineering students
will be required to take either the software
engineering course or an electronic cir-
cuits course. Ideally, they should take
both and also be exposed to systems
engineering, embedded systems, net-
working, information systems, sensors,
and software. These additional topics
could be covered in their technical elec-
tives or in graduate courses. Some of
them could be covered in a minor also.
The university also hopes to establish an
undergraduate minor in information sci-
ences and technology for aerospace
engineering in 2008.

It should also be noted that it is dif-
ficult to teach an engineer all they need
to know in four years. In fact, the U.S.
National Academy of Engineering [29]
recommends that the bachelor of sci-
ence degree be recognized as a pre-engi-
neering degree. Scientists and engineers
need to continue learning throughout
their lifetimes to be effective. In addi-
tion, many aerospace engineering posi-
tions require a master’s degree, which
allows the student to concentrate on a
particular area. An excellent combina-
tion would be for a student to get a
bachelor of science in aerospace engi-
neering and then a master’s degree or
doctorate in software (or systems) engi-
neering. These graduates would be
extremely valuable. Another possibility is
to offer an undergraduate or graduate
minor in software engineering. Penn
State has a popular graduate minor in
computational science, which attracts
students from a wide variety of science
and engineering departments [30]. A
similar program could be created for
software engineering or systems engi-
neering.

Dedicated Software Engineering
Education Degree Programs
As previously stated, existing science
and engineering education programs
need to include more computing and
software in their curricula, but they also
need more dedicated software engineer-
ing programs. These software engineer-
ing programs, however, need to include

8 CROSSTALK The Journal of Defense Software Engineering January 2008

A
E

R
O

D
Y

N
A

M
IC

S

OLD
AEROSPACE ENGINEERINGA

S
T

R
U

C
T

U
R

E
S

ROSPACE EER ACE EROSPPA

P
R

O
P

U
L

S
IO

N

NGINEERINGEN ERINGNGINEE

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

G

DESIGN

A
E

R
O

D
Y

N
A

M
IC

S

MODERN
AEROSPACE ENGINEERINGAER

S
T

R
U

C
T

U
R

E
S

A
N

D
M

A
T

E
R

IA
L

S

SPA ROAEROS

D

P
R

O
P

U
L

S
IO

N

GINEERINGNGERRIN

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

GG

DESIGN AND SYSTEMS ENGINEERINGE

C
O

M
P

U
T

E
R

S
A

N
D

S
O

F
T

W
A

R
E

PACE ENGPA GINEEEENGGINNEE ECEAC EN

D

SYSTEYSTEMS ENMS EM

Figure 1: Old Aerospace Engineering

A
E

R
O

D
Y

N
A

M
IC

S

OLD
AEROSPACE ENGINEERINGA

S
T

R
U

C
T

U
R

E
S

ROSPACE EER ACE EROSPPA

P
R

O
P

U
L

S
IO

N

NGINEERINGEN ERINGNGINEE

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

G

DESIGN

A
E

R
O

D
Y

N
A

M
IC

S

MODERN
AEROSPACE ENGINEERINGAER

S
T

R
U

C
T

U
R

E
S

A
N

D
M

A
T

E
R

IA
L

S

SPA ROAEROS

D

P
R

O
P

U
L

S
IO

N

GINEERINGNGERRIN

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

GG

DESIGN AND SYSTEMS ENGINEERINGE

C
O

M
P

U
T

E
R

S
A

N
D

S
O

F
T

W
A

R
E

PACE ENGPA GINEEEENGGINNEE ECEAC EN

D

SYSTEYSTEMS ENMS EM

Figure 2: Modern Aerospace Engineering

“While computing and
software is crucial for
aerospace systems,
existing aerospace

engineering educational
programs usually do not

reflect this fact.”



The Critical Need for Software Engineering Education

plenty of science and engineering in
their curricula (e.g., physics, mathemat-
ics, and embedded systems). They
should not have an overemphasis on
management, business, and processes.
The Association for Computing
Machinery (ACM), the IEEE, and the
National Science Foundation have devel-
oped very good undergraduate curricula
in software engineering [3].

Currently in the United States, there
are only 10 accredited software engineer-
ing undergraduate programs [31], while
there are 67 aerospace engineering pro-
grams. The United States needs many
more software engineering programs.
This needs to happen soon, since it takes
years to start new programs and for stu-
dents to graduate. In addition, the
United States has an aging workforce.
Some companies in the aerospace and
defense business could see 40 percent of
their workforce retire in the next five
years [12]. According to the Wall Street
Journal, organizations such as the
National Aeronautics and Space
Administration have more engineers
over 60 than under 30.

In addition to the existing undergrad-
uate software engineering programs,
there are 109 software engineering mas-
ter’s degree programs and 40 software
engineering doctorate programs in the
United States. Few of the undergraduate
or graduate programs, however, are at
major research universities. In addition,
few of them exist at universities includ-
ed in the top 25 schools listed in the U.S.
News and World Report rankings. Most of
these programs are at relatively small
schools, maybe because they are able to
react more quickly to industry and soci-
ety needs.

Unfortunately, change occurs
extremely slowly in academia because
there are few incentives to change.
Government funding could and should
be used to help expedite these changes.
Industry leaders need to get involved
and demand change as well. There needs
to be internships and mentoring avail-
able. There is also a need for continuing
education. At the government labs and
in industry, there is a huge need for soft-
ware engineering training for its existing
workforce.

We also need software engineering
professional certification. The IEEE has
developed an excellent Certified
Software Development Professional
(CSDP) program [32, 33]. This is a great
program, but it is not quite a software
engineering certification program.
Unfortunately, there is no requirement

for a science or engineering background
for the certification, so it is not the same
as other professional engineering certifi-
cation programs. In addition, at the time
this article was written, there were only
575 people in the world who have the
CSDP certification. Beginning in 1999,
Texas began certifying software engi-
neers [34]. In addition, the Open Group
has established an information technolo-
gy architect certification program [35].

Conclusion
Higher education in the United States
needs to be more responsive to the soft-
ware engineering needs of its industry
and government labs. The United States
cannot be complacent with its techno-
logical leads in any field, especially soft-
ware and aerospace, which are two of
the most important industries in its
economy. These two industries annually
provide more than $180 billion and $900
billion, respectively, to the economy.
Technology has been changing at an
exponential rate, and too often curricula
changes extremely slowly. Software engi-
neering needs to be incorporated into
existing science and engineering pro-
grams, especially aerospace engineering
curricula. We also need to create more
dedicated software engineering educa-
tional programs at all levels – short
courses, bachelors, masters, and doctorate
levels. And finally, there also needs to be a
national effort to develop professional
certification of software engineers.u

References
1. Jorgenson, D.W., and C.W. Wessner,

Eds. Measuring and Sustaining the
New Economy, Software, Growth, and
the Future of the U.S. Economy.
Washington, D.C.: National Acade-
mies Press, 2006.

2. NIST <www.nist.gov/public_affairs/
releases/n02-10.htm>.

3. IEEE Computer Society and the
ACM. “Curriculum Guidelines for
Undergraduate Degree Programs in
Software Engineering.” 2004 <http://
sites.computer.org/ccse/SE2004
Volume.pdf>.

4. Vaughn, R. “Software Engineering
Degree Programs.” CrossTalk
Mar. 2000.

5. Computer Science and Telecommu-
nications Board. Expanding Infor-
mation Technology Research to Meet
Society’s Needs. Washington, D.C.:
The National Academies Press, 2000.

6. Sommerville, I. Software Engineering.
Addison-Wesley, 2006.

7. Glass, Robert L. Software Runaways:

Monumental Software Disasters.
Prentice-Hall, 1997.

8. Eggen, D., and G. Witte. “The FBI’s
Upgrade That Wasn’t.” Washington
Post 18 Aug. 2006.

9. U.S. House of Representatives. Proc.
of the Aviation Subcommittee
Meeting. Washington, D.C.: 2001.

10. Leveson, Nancy G. “Role of Software
in Spacecraft Accidents.” Journal of
Spacecraft and Rockets 41.4 (2004).

11. Winter, D.C. Presentation at the
National Workshop on Aviation
Software Systems: Design for
Certifiably Dependable Systems.
Alexandria, VA: Oct. 5-6, 2006.

12. “The Aging Workforce: Turning
Boomers Into Boomerangs.” The
Economist 16 Feb. 2006.

13. Albaugh, J.F. “Embracing Risk: A
Vision for Aerospace in the 21st
Century.” Frank Whittle Lecture, Royal
Aeronautical Society, Jan. 19, 2005.

14. Commission on the Future of the U.S.
Aerospace Industry. “Final Report of
the Commission on the Future of the
U.S. Aerospace Industry.” Washington
D.C.: National Academies Press, 2002.

15. Hafner, K. “Honey, I Programmed the
Blanket.” New York Times 27 May
1999.

16. Pehrson, R.J. “Software Development
for the Boeing 777.” CrossTalk
Jan. 1996.

17. Moody, B.L. “F-22 Software Risk
Reduction.” CrossTalk May, 2000.

18. U.S. Air Force. Software Technology
Support Center (STSC). “A Gentle
Introduction to Software Engineer-
ing.” Hill Air Force Base, UT: STSC,
1999.

19. Glass, R.L. Facts and Fallacies of Soft-
ware Engineering. Addison-Wesley,
2006.

20. Ada Home <www.adahome.com>.
21. Knight, J.C. Presentation at the

National Workshop on Aviation
Software Systems: Design for
Certifiably Dependable Systems.
Alexandria, VA: Oct. 5-6, 2006.

22. American Institute of Physics. The
Statistical Research Center <www.aip.
org/statistics>.

23. Knight, J.C., and N.G. Leveson.
“Software and Higher Education
Inside Risks Column.” Communica-
tions of the ACM 49.1 (2006).

24. Sanders, P. “Improving Software
Engineering Practice.” CrossTalk
Jan. 1999.

25. Aging Avionics in Military Aircraft.
Washington D.C.: National Academies
Press, 1993.

26. Long, L.N. “Computing, Information,

January 2008 www.stsc.hill.af.mil 9



Training and Education

and Communication: The Fifth Pillar
of Aerospace Engineering.” Journal of
Aerospace Computing, Information,
and Communication 1.1 (2004).

27. “The Future of Aerospace.” Wash-
ington, D.C.: National Academies
Press, 1993.

28. Pennsylvania State University Curri-
culum Guide 2006-2007 <www.aero.
psu.edu/undergrads/UG_Curriculum
_Guide_2006-07.pdf>.

29. “Educating the Engineer of 2020:
Adapting Engineering Education to
the New Century.” Washington D.C.:
National Academies Press, 2005.

30. <www.csci.psu.edu/minor.html>.
31. ABET <www.abet.org/>.
32. IEEE Computer Society. IEEE

Computer Society Certified Software
Development Professional Program
Web Center <www.computer.org/
portal/pages/ieeecs/education/
certification/>.

33. IEEE Computer Society. Guide to the
Software Engineering Body of
Knowledge. IEEE Computer Society,
2004.

34. Voas, J. “The Software Quality
Certification Triangle.” CrossTalk
Nov., 1998.

35. The Open Group. “IT Architect
Certification Program” <www.open
group.org/itac>.

10 CROSSTALK The Journal of Defense Software Engineering January 2008

About the Author

Lyle N. Long, D.Sc., is
a distinguished professor
of aerospace engineer-
ing, bioengineering, and
mathematics at the Penn-
sylvania State University.

He is also director of the graduate minor
in computational science. Long has a
doctorate of science from George
Washington University, a master’s degree
from Stanford University, and a bache-
lor’s degree in mechanical engineering
from the University of Minnesota. He is
an IEEE Computer Society Certified
Software Development Professional.
Long received the 1993 IEEE Computer
Society Gordon Bell Prize. He is a Fellow
of the American Institute of Aeronautics
and Astronautics, is a senior member of
the IEEE, and has written more than 130
technical papers. In 2007-2008, he was a
Moore Distinguished Scholar at the
California Institute of Technology.

Pennsylvania State University
233 Hammond BLDG
University Park, PA 16802
Phone: (814) 865-1172 
Fax: (814) 865-7092
E-mail: lnl@psu.edu

COMING EVENTS

February 4-8
28th Annual Texas Computer Education
Association’s Convention and Exposition

Austin, TX
www.tcea2008.org

February 13-15
2008 Conference for Industry and

Education Collaboration
New Orleans, LA

www.asee.org/conferences/ciec/
2008/index.cfm

February 18-22
2008 Working IEEE/IFIP Conference on

Software Architecture
Vancouver, BC, Canada

www.wicsa.net

February 25-28
24th Annual National Test and

Evaluation Conference
Palm Springs, CA

www.ndia.org/Template.cfm?
Section=8910&Template=/Content
Management/ContentDisplay.cfm

&ContentID=18912

February 27-28
AFCEA 2008 Homeland

Security Conference
Washington, D.C.

www.afcea.org/events/homeland/
landing.asp

April 29-May 2 

2008 Systems and Software
Technology Conference

Las Vegas, NV
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

Dear CrossTalk Editor,
Once again, the cover for CrossTalk
is a knockout! Congratulations to the staff
and to the editor for a great edition. I
was wondering when systems engineer-
ing would be a transitional topic about
systems engineering and software inclu-
sion.

When I stepped down from the prin-
cipal investigator position on the B-1B
program, I went into software because
of the lack of understanding I found
between systems engineering and soft-
ware. Due to my relationship with the
company’s system engineering manager
and the software manager – and the help
of CrossTalk articles that I sent
them – they finally decided to have meet-
ings in their manager’s office and talked
together! What a milestone that was! I
still send CrossTalk articles to these
guys, which they are grateful for because
it helps keep them current on industry

thinking.
This edition should be given to every

systems engineer manager and staff, as
well as software managers. Let’s get the
communication going among our con-
tractors!

I could not have been more pleased
with Dr. John W. Fischer’s introduction
in the Sponsor’s Note to this month’s
issue of CrossTalk. His remarks are
dead-on regarding the issues and evolution
of system engineering with software.
Gee, can you imagine what the founda-
tion for requirements would start to look
like?

Thanks for another great issue! 

– Melonee Moses
Software/Logistics Management Specialist

DCMA Boeing
Long Beach, CA

<melonee.moses@dcma.mil>

LETTER TO THE EDITOR


